Search results

1 – 6 of 6
Article
Publication date: 1 January 2012

Jian‐Xin Shen, He Hao, Meng‐Jia Jin and Wei‐Zhong Fei

The purpose is to present a sensorless control method by which high‐resolution rotor position information is estimated and used for phase‐advancing operation of a high‐speed…

Abstract

Purpose

The purpose is to present a sensorless control method by which high‐resolution rotor position information is estimated and used for phase‐advancing operation of a high‐speed permanent magnet (PM) brushless DC (BLDC) motor.

Design/methodology/approach

The proposed sensorless control approach uses hardware to observe the flux vector which is excited by rotor magnets. It can provide the rotor position which is the same as the phase angle of the observed flux vector.

Findings

High‐resolution rotor position signal of the BLDC motor for dynamic phase‐advancing control cannot be directly obtained from the conventional Hall‐effect sensors, or via the traditional back‐EMF‐based sensorless control strategies in which the back‐EMF may be even undetectable at high‐speed. The proposed rotor‐flux‐observer (RFO)‐based sensorless control method overcomes these problems, and meanwhile provides high‐resolution rotor position information for the phase‐advancing purpose.

Originality/value

The RFO‐based sensorless control is traditionally applied to PM brushless ac (BLAC) operations, where the motor voltage vector can be calculated from the inverter switching status. However, this is not readily applicable to a BLDC motor since the voltage of the floating phase cannot be calculated. Moreover, during high‐speed operation, the microprocessor may not be sufficiently fast to calculate the high‐resolution rotor position. Therefore, in this paper, it is proposed to use hardware to observe the rotor‐flux‐vector. The microprocessor only samples the vector's α‐ and β‐components and calculates the phase angle, hence, its burden is low. The proposed method is validated with a 1.8 kW 85,000 rpm BLDC motor system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Gui-Yu Zhou, He Hao, Meng-Jia Jin and Jian-Xin Shen

The purpose of this paper is to investigate the effect of the interlocking process on the iron loss in the lamination core and to increase the efficiency of electrical machines…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the interlocking process on the iron loss in the lamination core and to increase the efficiency of electrical machines.

Design/methodology/approach

A 3D electromagnetic model of the interlocking dowels is proposed in order to simulate the eddy current distribution in the lamination core. Considering the time-consuming of the 3D finite element method (FEM), a 2D electromagnetic model is then proposed based on the 3D model. Influence of the interlocking process on the motor performances is analyzed with 2D FEM, considering the electrical connection of the dowels and the magnetic property deterioration of the electrical steel sheets.

Findings

The interlocking process removes the insulation between the laminations at the cut-edges of the interlocking dowels, causing extra eddy current loss in the lamination core. The effect of the interlocking process is dependent on the number, location and size of the interlocking dowels.

Practical implications

The interlocking dowel model is established in order to simulate the effects of the interlocking process. By using the FEM calculation, optimal solution is discussed to minimize the undesired effect of the interlocking dowels.

Originality/value

In this paper, the FEM model of the induction motor with interlocked stator core is first established, then simulation analysis is implemented. Results shows that choosing a proper number of interlocking dowels with suitable location and size can reduce the extra loss.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Shun Cai, Meng-Jia Jin, He Hao and Jian-Xin Shen

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as…

Abstract

Purpose

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as alternatives of the interior permanent magnet synchronous machine (IPMSM), and to investigate the performance and conclude both advantages and disadvantages.

Design/methodology/approach

A unified mathematical model is established for the IPMSM, SynRM and PMASynRM. Then finite element method (FEM) is used to compare the electromagnetic performance. Permeability-frozen method is utilized to distinguish basic electromagnetic torque and reluctance torque.

Findings

The PMASynRM can improve the power factor of the SynRM, overcome the drawback of the IPMSM in the high-speed flux-weakening region and is more proper to operate over a wide speed region. The SynRM is mechanically robust for lacking of the permanent magnets, and the PMASynRM can keep similar rotor stress as the SynRM by optimizing the magnets. Assembly of the SynRM is the simplest, and the economic performance of the SynRM and PMASynRM could be much better than the IPMSM which even uses ferrite magnets.

Practical/implications

The SynRM can produce identical torque and efficiency compared with the IPMSM except the poor power factor. The poor power factor could be improved by adopting the PMASynRM, which is proved to be able to act as an alternative of the IPMSM for low-cost high-performance application.

Originality/value

This paper provides the theoretical model of the IPMSM, SynRM and PMASynRM in a unified format. The electromagnetic, mechanical and economic performances of the three kinds of synchronous motors are compared comprehensively. Then, both the advantages and disadvantages are summarized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Jian‐Xin Shen, He Hao, Can‐Fei Wang and Meng‐Jia Jin

The aim of this paper is to present a new sensorless control strategy using a flux observer, which is particularly designed for taking into account the rotor saliency and winding…

Abstract

Purpose

The aim of this paper is to present a new sensorless control strategy using a flux observer, which is particularly designed for taking into account the rotor saliency and winding inductance variation in an interior permanent magnet synchronous motor (IPMSM).

Design/methodology/approach

In a PMSM, the magnets‐excited flux‐linkage, i.e. the rotor flux‐linkage, can be expressed as a vector. Its phase angle stands for the rotor position. Therefore, if this vector is estimated with an observer, the rotor position can be obtained without a position sensor, consequently, sensorless control can be realized. The main object of this paper is to establish and implement a model of rotor flux observer, specifically for IPMSM.

Findings

The flux observer model is built on the d‐q‐0 frame, using unequal values of the d‐axis inductance Ld and q‐axis inductance Lq to represent the IPMSM rotor saliency. Its digital implementation is proposed, whilst the sensorless control strategy is experimentally verified.

Research limitations/implications

Insignificant error exists in the estimated rotor position, probably due to the non‐sinusoidal variation of winding inductance. Further improvement of the observer model is preferable.

Originality/value

In previous works, the rotor flux observer is only applied to surface‐mounted permanent magnet synchronous motors (SPMSM) in which the winding inductance is constant. However, the proposed observer can deal with the rotor saliency and inductance variation in IPMSM, whilst its digital implementation is also new.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Jianxin Shen, Kang Wang, Dan Shi, Canfei Wang and Mengjia Jin

The purpose of this paper is to present the optimal design of a low-cost interior permanent magnet (IPM) alternating current (AC) motor. It examines the influence of the permanent…

Abstract

Purpose

The purpose of this paper is to present the optimal design of a low-cost interior permanent magnet (IPM) alternating current (AC) motor. It examines the influence of the permanent magnet (PM) materials, and proposes a simple and practical method of optimizing the air-gap field to achieve sinusoidal back electromotive force (EMF), and to reduce the cogging torque.

Design/methodology/approach

IPM AC motors with different magnet materials and various topologies are comparatively studied. Finite element method (FEM) is used to predict the performances of these designs. Material costs and manufacture costs are both taken into account. Finally, an optimized design is prototyped and tested, validating the design considerations.

Findings

In an IPM AC motor, even if the rotor outer profile is round, the air-gap field distribution can be fined, while the cogging torque can be significantly reduced, by properly shaping the stator tooth tips. Nevertheless, this technique is usually applicable to motor configurations with concentrated windings, but not to those with distributed windings.

Originality/value

While using ferrite magnets for PM AC motors with a kW power, interior magnets are usually inserted in V-shaped slots, and the rotor outer profile is often shaped in order to enhance the air-gap field distribution. However, such a rotor configuration usually increases the manufacture costs, and also deteriorates the consistency of mass production. Therefore, a new motor configuration with a round rotor outer profile and shaped stator tooth tips is proposed. It can not only overcome the aforementioned problems, but also improve the motor performance.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 May 2022

Jing Hao Koh and Chee Men Lim

This paper examines the relationship between traditional timber frame structure and the diasporic identity of the Southern Fujianese Chinese community in West Malaysia. It…

Abstract

Purpose

This paper examines the relationship between traditional timber frame structure and the diasporic identity of the Southern Fujianese Chinese community in West Malaysia. It analyses the cultural semiotics of Southern Fujianese traditional Chinese temple timber frame structure architectural language. This study addresses the under-examined domain of Chinese cultural identity representation through the architecture of traditional Chinese temples in Malaysia. It seeks to understand its underlying structure and process involved in revealing its disposition within the cultural phenomena from the perspective of Chinese cultural semiotics.

Design/methodology/approach

Selected Southern Fujianese traditional Chinese temples in West Malaysia built between the 18th to the 19th century that retain the traditional timber frame structure were investigated through field survey and focused publication review. Historical interpretive analysis and typological analysis supplement the cultural semiotics analysis to assess the timber frame structure attributes concerning architectural language expressions.

Findings

Findings reveal that the architectural language signifiers of the structural disposition of the timber framework and its corresponding formal articulation establish a clear statement of the Southern Fujian Chinese cultural identity.

Originality/value

The evaluation of the cultural identity signifiers helps to understand the underlying structure and process of the Chinese cultural semiotics in architecture. Results of this research substantiate the significance of timber frame structure in preserving the architectural heritage of the Southern Fujianese traditional Chinese temples. They provide important references for conservation and cultural studies of such building typology.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. 17 no. 1
Type: Research Article
ISSN: 2631-6862

Keywords

1 – 6 of 6